Keynes vs. Classical views of the IS Curve

- \(\text{reset;} \)

- \(\text{assume}(C_0>0): \text{assume}(C_Y>0): \text{assume}(C_Y<1, _\text{and}): \text{assume}(T>0); \)
- \(\text{assume}(G>0): \text{assume}(I_r<0): \text{assume}(I_o>0): \text{assume}(T_o>0): \text{assume}(T_y>0) : \)

Warning: protected variable \(T_o \) overwritten
Warning: protected variable \(T_o \) overwritten
Warning: protected variable \(T_o \) overwritten

- \(I_Y:=0.1: \text{Cy}:=0.8; \)

Household consumption
- \(C:=C_0+C_Y\cdot(Y-T_o-T_y\cdot T); \)

\[C = C_0 - 0.8 \cdot T_o + 0.8 \cdot Y - 0.8 \cdot T \cdot T_y \]

Investment
- \(\text{Inv}:=I_o+I_r\cdot r +I_Y\cdot Y ; \)

\[I_o + 0.1 \cdot Y + I_r \cdot r \]

Equilibrium
- \(\text{IS}:=Y=C+\text{Inv}+G ; \)

\[Y = C_0 + G + I_o - 0.8 \cdot T_o + 0.9 \cdot Y - 0.8 \cdot T \cdot T_y + I_r \cdot r \]

Symbolic solution
- \(\text{ans}:=\text{solve}([\text{IS}],\{Y\}); \)

\[\{[Y = 10.0 \cdot C_0 + 10.0 \cdot G + 10.0 \cdot I_o - 8.0 \cdot T_o - 8.0 \cdot T \cdot T_y + 10.0 \cdot I_r \cdot r] \} \]

- \(\text{assign}(\text{op}(\text{ans}))\cdot Y ; \)

\[10.0 \cdot C_0 + 10.0 \cdot G + 10.0 \cdot I_o - 8.0 \cdot T_o - 8.0 \cdot T \cdot T_y + 10.0 \cdot I_r \cdot r \]

Numeric solution

Keynes believed that managers were at times victims of "animal spirits" and might
irrationally
at those time. The investment function can be represented as \(I = I_o + I_r^*r \) where the
irrational behavior
is part of autonomous (\(I_o \)) investment and the rational (predictable) part is given by \(I_r^*r \).
In the
Keynesian work the rational part will be fairly small (\(I_r = -0.5 \)) compared to the classical
view where
the rational part is much more significant (\(I_r = -50 \)).

A Keynesian solution

- \(C_o := 100; \ C_y := 0.9; \ I_r := -0.5; \ G := 100; \ T := 100; \ I_o := 100; \ I_y := 0.1; \ T_y := 0.3; \ T_o := 50; \ r := 10; \)

Warning: protected variable \(T_o \) overwritten

- \(r := 10; \ \ r_is1 := r; \ Y_is1 := Y; \)

 10

 2310.0

- \(r := 20; \ \ r_is2 := r; \ Y_is2 := Y; \)

 20

 2260.0

A "classical solution"

- \(C_y := 0.2; \ I_r := -50; \ C_o := 50; \ I_o := 1000; \)
- \(r := 10; \ \ r_is3 := r; \ Y_is3 := Y; \ Inv; \)

 10

 5860.0

 1086.0

- \(r := 20; \ \ r_is4 := r; \ Y_is4 := Y; \ Inv; \)

 20

 860.0

 86.0

- \(p1 := \text{plot::Polygon2d}([[Y_is1, r_is1], [Y_is2, r_is2]], \)
 \ Color=\text{RGB::Red,}
 \ Title="Keynes", \ TitlePosition=[2700,19], \ TitleFont=[\text{RGB::Red}]) \)
Some things to note. A change in interest rates has a much greater effect in the classical view than it does in the Keynesian view. In the Keynesian view an increase in interest rates from $r=10$ to $r=20$ decreased household income by

\[Y_{is1} - Y_{is2}; \]
while in the classical view the same change in interest rates decreased income by

\[Y_{is3} - Y_{is4} ; \]

\[5000.0 \]